Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

### Bis[*u*-bis(diphenylphosphino)methane- $\kappa^2 P: P'$ ] digold(I)(Au—Au) dinitrate perdeuteromethanol solvate

Leigh-Anne de Jongh, Christoph E. Strasser, Stephanie Cronje and Helgard G. Raubenheimer\*

Department of Chemistry, University of Stellenbosch, Private Bag X1, Matieland 7602. South Africa

Correspondence e-mail: hgr@sun.ac.za

Received 20 June 2007; accepted 25 June 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.022; wR factor = 0.052; data-to-parameter ratio = 16.2.

In the centrosymmetric dicationic cyclic title compound [Au<sub>2</sub>(C<sub>25</sub>H<sub>22</sub>P<sub>2</sub>)<sub>2</sub>](NO<sub>3</sub>)<sub>2</sub>·2CD<sub>3</sub>OD, an aurophilic interaction with a distance of 3.0245 (3) Å is found between the lineardicoordinated Au<sup>I</sup> centres. The perdeuteromethanol solvent molecules are linked to the nitrate anions via hydrogen bonds.

#### **Related literature**

For related literature, see: Angermaier & Schmidbaur (1995); Bauer & Schmidbaur (1997); Cooper et al. (1984); Jaw et al. (1989); Khan et al. (1989); King et al. (1989); Liou et al. (1994); Malatesta et al. (1966); Perreault et al. (1992); Porter et al. (1989); Schmidbaur et al. (2005); Uson et al. (1986); Wang & Liu (1994).



#### **Experimental**

#### Crystal data

| $[Au_2(C_{25}H_{22}P_2)_2](NO_3)_2 \cdot 2CD_4O$ | V = 2460.5 (3) Å <sup>3</sup>             |
|--------------------------------------------------|-------------------------------------------|
| $M_r = 1358.71$                                  | Z = 2                                     |
| Monoclinic, $P2_1/n$                             | Mo $K\alpha$ radiation                    |
| a = 11.6214 (8)  Å                               | $\mu = 6.14 \text{ mm}^{-1}$              |
| b = 13.6313 (9) Å                                | T = 100 (2)  K                            |
| c = 16.4319 (12) Å                               | $0.27 \times 0.19 \times 0.13 \text{ mm}$ |
| $\beta = 109.048 (1)^{\circ}$                    |                                           |

 $R_{\rm int} = 0.025$ 

14182 measured reflections

5019 independent reflections

4626 reflections with  $I > 2\sigma(I)$ 

#### Data collection

Bruker APEX CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002)  $T_{\rm min} = 0.256, T_{\rm max} = 0.450$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.022$ | 309 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.052$               | H-atom parameters constrained                              |
| S = 1.06                        | $\Delta \rho_{\rm max} = 1.64 \text{ e } \text{\AA}^{-3}$  |
| 5019 reflections                | $\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$ |

#### Table 1

Selected geometric parameters (Å, °).

| Au1-P1                  | 2.3116 (8) | P1-C1                                 | 1.821 (3) |
|-------------------------|------------|---------------------------------------|-----------|
| Au1-P2 <sup>i</sup>     | 2.3175 (8) | P2-C31                                | 1.805 (3) |
| Au1-Au1 <sup>i</sup>    | 3.0245 (3) | P2-C41                                | 1.818 (3) |
| P1-C21                  | 1.811 (3)  | P2-C1                                 | 1.832 (3) |
| P1-C11                  | 1.814 (3)  |                                       |           |
| $P1-Au1-P2^{i}$         | 177.76 (3) | P2 <sup>i</sup> -Au1-Au1 <sup>i</sup> | 91.70 (2) |
| P1-Au1-Au1 <sup>i</sup> | 89.62 (2)  |                                       | ()        |
|                         |            |                                       |           |

Symmetry code: (i) -x + 1, -y + 1, -z.

#### Table 2 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|------|-------------------------|--------------|--------------------------------------|
| O4-D4O3                     | 0.84 | 2.10                    | 2.908 (4)    | 161                                  |

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED.

The authors thank the National Research Foundation (NRF), South Africa, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2244).

#### References

Angermaier, K. A. & Schmidbaur, H. (1995). J. Chem. Soc. Dalton Trans. pp. 559-564.

Barbour, L. J. (2001), J. Supramol. Chem. 1, 189-191.

- Bauer, A. & Schmidbaur, H. (1997). J. Chem. Soc. Dalton Trans. pp. 1115-1116.
- Bruker (2002). SADABS (Version 2.05) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT. Version 6.45. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cooper, M. K., Mitchell, L. E., Hendrick, K., McPartlin, M. & Scott, A. (1984). Inorg. Chim. Acta, 84, L9-L10.
- Jaw, H. R. C., Savas, M. M., Rogers, R. D. & Mason, W. R. (1989). Inorg. Chem. 28, 1028-1037.
- Khan, Md. N. I., King, C., Heinrich, D. D., Fackler, J. P. Jr & Poter, L. C. (1989). Inorg. Chem. 28, 2150-2154.
- King, C., Wang, J. C., Khan, Md. N. I. & Fackler, J. P. Jr (1989). Inorg. Chem. 28, 2145-2149.

Liou, L.-S., Liu, C.-P. & Wang, J.-C. (1994). Acta Cryst. C50, 538-540.

- Malatesta, L., Naldini, L., Simonetta, G. & Cariati, F. (1966). Coord. Chem. Rev. 1, 255–262.
- Perreault, D., Drouin, M., Michel, A., Miskowski, V. M., Schaefer, W. P. & Harvey, P. D. (1992). *Inorg. Chem.* 31, 685–702.
- Porter, L. C., Khan, Md. N. I., King, C. & Fackler, J. P. (1989). Acta Cryst. C45, 947–949.
- Schmidbaur, H., Cronje, S., Djordjevic, B. & Schuster, O. (2005). *Chem. Phys.* **311**, 151–161.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Uson, R., Laguna, A., Laguna, M., Gimeno, M. C., Jones, G. J., Fittschen, C. & Sheldrick, G. M. (1986). J. Chem. Soc. Chem. Commun. pp. 509–510.Wang, J.-C. & Liu, L.-K. (1994). Acta Cryst. C50, 704–706.

O Ac

Acta Cryst. (2007). E63, m2137-m2138 [doi:10.1107/S1600536807030887]

# Bis[ $\mu$ -bis(diphenylphosphino)methane- $\kappa^2 P: P'$ ]digold(I)(Au-Au) dinitrate perdeuteromethanol solvate

#### L.-A. de Jongh, C. E. Strasser, S. Cronje and H. G. Raubenheimer

#### Comment

Binuclear gold complexes with bridging bidentate ligands and various counter-ions have been the subject of several studies due to their rich luminescence and bonding properties (King *et al.*, 1989) and have been structurally characterized (Jaw *et al.*, 1989; Khan *et al.*, 1989; Porter *et al.*, 1989; Liou *et al.*, 1994; Wang & Liu, 1994; Bauer & Schmidbaur, 1997). The bridging methylene carbon can be exploited as a coordination and reactive centre. Neutral homo- or heterometallic tetranuclear derivatives have been reported (Uson *et al.*, 1986). It is assumed that Au···Au distances are determined by electronic effects of the substituents *L* and *X* at gold but it has become more obvious that steric effects play a decisive role. The weak forces associated with Au···Au contacts can be overruled by steric repulsion and other factors like packing forces (Angermaier & Schmidbaur, 1995). Here we report another crystal and molecular structure containing this dication. Each nitrate counter anion engages in a hydrogen bond to one perdeuteromethanol lattice solvent.

The asymmetric unit of (A) consists of one half of the dication,  $[(\mu-dppm)_2Au_2]^{2+}$ , containing one nitrate anion and one deuterated methanol molecule. The rest of the molecule is related by a centre of symmetry between the gold atoms of each dimer. The Au…Au separation is 3.0245 (3) Å. This agrees with a weak Au…Au interaction (Schmidbaur *et al.*, 2005). In this instance the steric constraints of the dppm ligand assist the aurophillic interaction in the Au<sub>2</sub>P<sub>4</sub>C<sub>2</sub> ring which has a chair conformation (Perreault *et al.*, 1992; Bauer & Schmidbaur, 1997). The Au centres adopt a normal linear two-coordinate geometry of 177.76 (3) Å, slightly distorted from ideality by the aurophilic bonding. Channels of anions are observed running parallel to the *a* axis. Two oxygen atoms of the nitrate are aligned towards the gold atom in the cation with distances of 3.470 (2) Å for O2–Au1<sup>i</sup> [symmetry code: (i) = -x + 1, -y + 1, -z] and 3.357 (2) Å for O1–Au1.

#### **Experimental**

The title compound was prepared using  $(\mu$ -dppm)<sub>2</sub>AuCl<sub>2</sub> (Cooper *et al.*, 1984) and literature methods (Malatesa *et al.*, 1966). Colourless crystals that were suitable for X-Ray diffraction were obtained at 251 K in deuterated methanol.

#### Refinement

Hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms with distances for aromatic C—H = 0.95 Å, methyl C—D = 0.98 Å and methanol O—D = 0.84 Å.  $U_{iso}$  values were set at 1.2 times  $U_{eq}(C,O)$  for all H/D atoms except for methyl D at 1.5  $U_{eq}(C)$ . A residual electron density peak of 1.64 e Å<sup>-3</sup> was located 1.188 Å next to O2.

Figures



Fig. 1. The molecular structure of (A), showing atom labels and 50% probability displacement ellipsoids for non-H atoms.

### $Bis[\mu-bis(diphenylphosphino)methane-\kappa^2 P:P'] digold(I)(Au—Au) dinitrate perdeuteromethanol solvate$

| Crystal data                                     |                                              |
|--------------------------------------------------|----------------------------------------------|
| $[Au_2(C_{25}H_{22}P_2)_2](NO_3)_2 \cdot 2CD_4O$ | $F_{000} = 1320$                             |
| $M_r = 1358.71$                                  | $D_{\rm x} = 1.834 {\rm ~Mg~m}^{-3}$         |
| Monoclinic, $P2_1/n$                             | Melting point: 414.8 K                       |
| Hall symbol: -P 2yn                              | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| a = 11.6214 (8) Å                                | Cell parameters from 6683 reflections        |
| b = 13.6313 (9)  Å                               | $\theta = 2.4 - 26.4^{\circ}$                |
| c = 16.4319 (12)  Å                              | $\mu = 6.14 \text{ mm}^{-1}$                 |
| $\beta = 109.0480 \ (10)^{\circ}$                | T = 100 (2)  K                               |
| $V = 2460.5 (3) \text{ Å}^3$                     | Prism, colourless                            |
| Z = 2                                            | $0.27\times0.19\times0.13~mm$                |

#### Data collection

| Bruker APEX CCD area-detector diffractometer                | 5019 independent reflections           |
|-------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                    | 4626 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.025$                  |
| T = 100(2)  K                                               | $\theta_{\text{max}} = 26.4^{\circ}$   |
| ω scans                                                     | $\theta_{\min} = 1.9^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2002) | $h = -14 \rightarrow 14$               |
| $T_{\min} = 0.256, T_{\max} = 0.450$                        | $k = -17 \rightarrow 12$               |
| 14182 measured reflections                                  | $l = -20 \rightarrow 18$               |

#### Refinement

| Secondary atom site location: difference Fourier map     |
|----------------------------------------------------------|
| Hydrogen site location: inferred from neighbouring sites |
| H-atom parameters constrained                            |
| $w = 1/[\sigma^2(F_o^2) + (0.0256P)^2 + 0.7357P]$        |
|                                                          |

|                  | where $P = (F_0^2 + 2F_c^2)/3$                             |
|------------------|------------------------------------------------------------|
| <i>S</i> = 1.06  | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| 5019 reflections | $\Delta \rho_{\text{max}} = 1.64 \text{ e} \text{ Å}^{-3}$ |
| 309 parameters   | $\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$ |
|                  |                                                            |

Primary atom site location: structure-invariant direct Extinction correction: none

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У            | Z             | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|---------------|---------------------------|
| Au1 | 0.408600 (9) | 0.485644 (8) | 0.046685 (7)  | 0.01107 (5)               |
| P1  | 0.26529 (6)  | 0.57042 (6)  | -0.06166 (5)  | 0.01064 (16)              |
| P2  | 0.45307 (7)  | 0.60437 (6)  | -0.15453 (5)  | 0.01081 (16)              |
| 01  | 0.6025 (2)   | 0.78397 (16) | 0.18981 (15)  | 0.0216 (5)                |
| O2  | 0.6738 (2)   | 0.66210 (17) | 0.13524 (14)  | 0.0230 (5)                |
| O3  | 0.5548 (2)   | 0.63412 (17) | 0.21084 (15)  | 0.0248 (5)                |
| O4  | 0.3636 (2)   | 0.7250 (2)   | 0.26312 (16)  | 0.0338 (6)                |
| D4  | 0.4274       | 0.6978       | 0.2610        | 0.051*                    |
| N1  | 0.6106 (2)   | 0.6935 (2)   | 0.17854 (17)  | 0.0182 (6)                |
| C1  | 0.2969 (3)   | 0.5708 (2)   | -0.16312 (19) | 0.0122 (6)                |
| H1A | 0.2404       | 0.6173       | -0.2029       | 0.015*                    |
| H1B | 0.2796       | 0.5046       | -0.1891       | 0.015*                    |
| C4  | 0.3516 (4)   | 0.7089 (3)   | 0.3450 (3)    | 0.0389 (10)               |
| D4A | 0.4209       | 0.7384       | 0.3894        | 0.058*                    |
| D4B | 0.3496       | 0.6383       | 0.3554        | 0.058*                    |
| D4C | 0.2759       | 0.7390       | 0.3468        | 0.058*                    |
| C11 | 0.1141 (3)   | 0.5171 (2)   | -0.0928 (2)   | 0.0132 (6)                |
| C12 | 0.0970 (3)   | 0.4237 (3)   | -0.0638 (2)   | 0.0220 (7)                |
| H12 | 0.1636       | 0.3896       | -0.0247       | 0.026*                    |
| C13 | -0.0175 (3)  | 0.3809 (2)   | -0.0922 (2)   | 0.0264 (8)                |
| H13 | -0.0291      | 0.3173       | -0.0727       | 0.032*                    |
| C14 | -0.1141 (3)  | 0.4298 (3)   | -0.1485 (2)   | 0.0224 (7)                |
| H14 | -0.1922      | 0.3999       | -0.1678       | 0.027*                    |
| C15 | -0.0980 (3)  | 0.5223 (3)   | -0.1770 (2)   | 0.0226 (8)                |
| H15 | -0.1654      | 0.5562       | -0.2155       | 0.027*                    |
| C16 | 0.0151 (3)   | 0.5660 (2)   | -0.1499 (2)   | 0.0187 (7)                |

| H16 | 0.0257     | 0.6296     | -0.1701       | 0.022*     |
|-----|------------|------------|---------------|------------|
| C21 | 0.2552 (2) | 0.6982 (2) | -0.03458 (19) | 0.0115 (6) |
| C22 | 0.3051 (3) | 0.7273 (2) | 0.0513 (2)    | 0.0150 (6) |
| H22 | 0.3408     | 0.6798     | 0.0945        | 0.018*     |
| C23 | 0.3027 (3) | 0.8244 (2) | 0.0735 (2)    | 0.0171 (7) |
| H23 | 0.3366     | 0.8438     | 0.1320        | 0.021*     |
| C24 | 0.2508 (3) | 0.8942 (2) | 0.0104 (2)    | 0.0170 (7) |
| H24 | 0.2498     | 0.9613     | 0.0259        | 0.020*     |
| C25 | 0.2008 (3) | 0.8660 (2) | -0.0748 (2)   | 0.0154 (6) |
| H25 | 0.1648     | 0.9137     | -0.1177       | 0.019*     |
| C26 | 0.2031 (3) | 0.7684 (2) | -0.0975 (2)   | 0.0154 (6) |
| H26 | 0.1692     | 0.7493     | -0.1561       | 0.018*     |
| C31 | 0.4599 (3) | 0.5910(2)  | -0.2622 (2)   | 0.0132 (6) |
| C32 | 0.3662 (3) | 0.6220 (2) | -0.3352 (2)   | 0.0150 (6) |
| H32 | 0.2903     | 0.6422     | -0.3306       | 0.018*     |
| C33 | 0.3844 (3) | 0.6232 (2) | -0.4144 (2)   | 0.0160 (7) |
| H33 | 0.3211     | 0.6454     | -0.4638       | 0.019*     |
| C34 | 0.4930 (3) | 0.5925 (2) | -0.4223 (2)   | 0.0199 (7) |
| H34 | 0.5052     | 0.5946     | -0.4767       | 0.024*     |
| C35 | 0.5846 (3) | 0.5587 (3) | -0.3505 (2)   | 0.0214 (7) |
| H35 | 0.6590     | 0.5363     | -0.3562       | 0.026*     |
| C36 | 0.5691 (3) | 0.5571 (2) | -0.2710 (2)   | 0.0187 (7) |
| H36 | 0.6322     | 0.5331     | -0.2223       | 0.022*     |
| C41 | 0.4729 (3) | 0.7353 (2) | -0.1336 (2)   | 0.0128 (6) |
| C42 | 0.5348 (3) | 0.7659 (2) | -0.0495 (2)   | 0.0163 (7) |
| H42 | 0.5652     | 0.7187     | -0.0052       | 0.020*     |
| C43 | 0.5520 (3) | 0.8650 (3) | -0.0308 (2)   | 0.0216 (7) |
| H43 | 0.5931     | 0.8856     | 0.0266        | 0.026*     |
| C44 | 0.5096 (3) | 0.9340 (2) | -0.0954 (2)   | 0.0208 (7) |
| H44 | 0.5222     | 1.0019     | -0.0827       | 0.025*     |
| C45 | 0.4485 (3) | 0.9034 (2) | -0.1791 (2)   | 0.0207 (7) |
| H45 | 0.4191     | 0.9508     | -0.2234       | 0.025*     |
| C46 | 0.4301 (3) | 0.8047 (2) | -0.1984 (2)   | 0.0176 (7) |
| H46 | 0.3884     | 0.7844     | -0.2558       | 0.021*     |

### Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-----------------|--------------|--------------|--------------|
| Au1 | 0.00955 (7) | 0.01244 (7) | 0.01065 (7)     | 0.00124 (4)  | 0.00248 (5)  | 0.00256 (4)  |
| P1  | 0.0095 (3)  | 0.0108 (4)  | 0.0113 (4)      | 0.0002 (3)   | 0.0029 (3)   | 0.0006 (3)   |
| P2  | 0.0099 (4)  | 0.0119 (4)  | 0.0102 (4)      | 0.0001 (3)   | 0.0027 (3)   | 0.0013 (3)   |
| 01  | 0.0273 (13) | 0.0147 (12) | 0.0199 (13)     | -0.0031 (10) | 0.0036 (10)  | -0.0014 (9)  |
| O2  | 0.0262 (12) | 0.0255 (13) | 0.0175 (13)     | 0.0054 (10)  | 0.0075 (10)  | 0.0000 (10)  |
| O3  | 0.0308 (13) | 0.0208 (13) | 0.0224 (14)     | -0.0106 (10) | 0.0083 (11)  | 0.0022 (10)  |
| O4  | 0.0357 (15) | 0.0440 (17) | 0.0221 (14)     | -0.0021 (13) | 0.0098 (12)  | 0.0010 (12)  |
| N1  | 0.0187 (14) | 0.0206 (15) | 0.0105 (14)     | -0.0001 (12) | -0.0018 (11) | -0.0004 (11) |
| C1  | 0.0114 (14) | 0.0128 (15) | 0.0114 (15)     | 0.0015 (12)  | 0.0025 (12)  | 0.0015 (12)  |
| C4  | 0.055 (3)   | 0.037 (2)   | 0.032 (2)       | -0.012 (2)   | 0.022 (2)    | -0.0014 (18) |

| C11 | 0.0118 (15) | 0.0148 (16) | 0.0138 (16) | -0.0007 (12) | 0.0052 (13) | -0.0006 (12) |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C12 | 0.0181 (16) | 0.0187 (18) | 0.029 (2)   | 0.0009 (13)  | 0.0073 (15) | 0.0064 (14)  |
| C13 | 0.0214 (17) | 0.0187 (18) | 0.040 (2)   | -0.0025 (14) | 0.0110 (16) | 0.0043 (15)  |
| C14 | 0.0141 (16) | 0.0269 (19) | 0.026 (2)   | -0.0064 (14) | 0.0065 (14) | -0.0047 (15) |
| C15 | 0.0140 (16) | 0.033 (2)   | 0.0194 (19) | 0.0003 (14)  | 0.0033 (14) | 0.0046 (14)  |
| C16 | 0.0156 (15) | 0.0171 (17) | 0.0229 (18) | -0.0003 (13) | 0.0056 (14) | 0.0034 (13)  |
| C21 | 0.0098 (14) | 0.0117 (15) | 0.0143 (16) | 0.0001 (11)  | 0.0057 (12) | -0.0002 (12) |
| C22 | 0.0134 (15) | 0.0178 (17) | 0.0131 (16) | 0.0005 (12)  | 0.0035 (13) | 0.0026 (12)  |
| C23 | 0.0187 (16) | 0.0208 (17) | 0.0121 (16) | 0.0006 (13)  | 0.0054 (13) | -0.0043 (13) |
| C24 | 0.0171 (16) | 0.0135 (16) | 0.0227 (18) | -0.0001 (12) | 0.0098 (14) | -0.0024 (13) |
| C25 | 0.0170 (15) | 0.0129 (16) | 0.0178 (17) | 0.0049 (12)  | 0.0076 (13) | 0.0049 (12)  |
| C26 | 0.0157 (15) | 0.0173 (16) | 0.0124 (16) | 0.0005 (13)  | 0.0036 (13) | 0.0007 (12)  |
| C31 | 0.0138 (14) | 0.0118 (15) | 0.0155 (16) | -0.0019 (12) | 0.0068 (13) | -0.0010 (12) |
| C32 | 0.0123 (15) | 0.0135 (16) | 0.0173 (17) | -0.0010 (12) | 0.0023 (13) | -0.0023 (12) |
| C33 | 0.0201 (16) | 0.0145 (16) | 0.0111 (16) | -0.0012 (13) | 0.0022 (13) | 0.0001 (12)  |
| C34 | 0.0246 (17) | 0.0228 (18) | 0.0144 (17) | -0.0033 (14) | 0.0091 (14) | -0.0004 (13) |
| C35 | 0.0161 (16) | 0.029 (2)   | 0.0218 (18) | 0.0018 (14)  | 0.0101 (14) | 0.0017 (15)  |
| C36 | 0.0155 (15) | 0.0219 (18) | 0.0195 (18) | 0.0026 (13)  | 0.0069 (13) | 0.0032 (14)  |
| C41 | 0.0111 (14) | 0.0130 (15) | 0.0153 (16) | -0.0007 (12) | 0.0058 (13) | -0.0008 (12) |
| C42 | 0.0143 (15) | 0.0191 (17) | 0.0140 (17) | 0.0040 (13)  | 0.0028 (13) | 0.0023 (13)  |
| C43 | 0.0162 (16) | 0.0253 (19) | 0.0199 (18) | -0.0008 (14) | 0.0013 (14) | -0.0087 (14) |
| C44 | 0.0197 (16) | 0.0141 (17) | 0.029 (2)   | 0.0004 (13)  | 0.0080 (15) | -0.0046 (14) |
| C45 | 0.0248 (17) | 0.0139 (17) | 0.0243 (19) | 0.0015 (14)  | 0.0092 (15) | 0.0055 (13)  |
| C46 | 0.0184 (16) | 0.0195 (17) | 0.0134 (17) | -0.0012 (13) | 0.0033 (13) | 0.0007 (13)  |

Geometric parameters (Å, °)

| Au1—P1               | 2.3116 (8) | C21—C26 | 1.393 (4) |
|----------------------|------------|---------|-----------|
| Au1—P2 <sup>i</sup>  | 2.3175 (8) | C21—C22 | 1.397 (4) |
| Au1—Au1 <sup>i</sup> | 3.0245 (3) | C22—C23 | 1.375 (4) |
| Au1—O3               | 3.357 (2)  | С22—Н22 | 0.9500    |
| P1—C21               | 1.811 (3)  | C23—C24 | 1.391 (4) |
| P1-C11               | 1.814 (3)  | С23—Н23 | 0.9500    |
| P1—C1                | 1.821 (3)  | C24—C25 | 1.384 (4) |
| P2—C31               | 1.805 (3)  | C24—H24 | 0.9500    |
| P2—C41               | 1.818 (3)  | C25—C26 | 1.384 (4) |
| P2—C1                | 1.832 (3)  | C25—H25 | 0.9500    |
| P2—Au1 <sup>i</sup>  | 2.3175 (8) | С26—Н26 | 0.9500    |
| O1—N1                | 1.256 (3)  | C31—C32 | 1.397 (4) |
| O2—N1                | 1.253 (3)  | C31—C36 | 1.402 (4) |
| O2—Au1 <sup>i</sup>  | 3.470 (2)  | C32—C33 | 1.385 (4) |
| O3—N1                | 1.257 (3)  | С32—Н32 | 0.9500    |
| O4—C4                | 1.414 (4)  | C33—C34 | 1.376 (4) |
| O4—D4                | 0.8400     | С33—Н33 | 0.9500    |
| C1—H1A               | 0.9900     | C34—C35 | 1.384 (5) |
| C1—H1B               | 0.9900     | С34—Н34 | 0.9500    |
| C4—D4A               | 0.9800     | C35—C36 | 1.376 (4) |
| C4—D4B               | 0.9800     | С35—Н35 | 0.9500    |
|                      |            |         |           |

| C4—D4C                                | 0.9800      | С36—Н36     | 0.9500    |
|---------------------------------------|-------------|-------------|-----------|
| C11—C16                               | 1.394 (4)   | C41—C46     | 1.389 (4) |
| C11—C12                               | 1.396 (4)   | C41—C42     | 1.397 (4) |
| C12—C13                               | 1.387 (4)   | C42—C43     | 1.385 (4) |
| C12—H12                               | 0.9500      | C42—H42     | 0.9500    |
| C13—C14                               | 1.372 (5)   | C43—C44     | 1.384 (5) |
| С13—Н13                               | 0.9500      | C43—H43     | 0.9500    |
| C14—C15                               | 1.378 (5)   | C44—C45     | 1.389 (5) |
| C14—H14                               | 0.9500      | C44—H44     | 0.9500    |
| C15—C16                               | 1.379 (4)   | C45—C46     | 1.383 (4) |
| C15—H15                               | 0.9500      | C45—H45     | 0.9500    |
| C16—H16                               | 0.9500      | C46—H46     | 0.9500    |
| P1—Au1—P2 <sup>i</sup>                | 177.76 (3)  | C26—C21—C22 | 119.4 (3) |
| P1—Au1—Au1 <sup>i</sup>               | 89.62 (2)   | C26—C21—P1  | 121.7 (2) |
| P2 <sup>i</sup> —Au1—Au1 <sup>i</sup> | 91.70 (2)   | C22—C21—P1  | 118.8 (2) |
| P1—Au1—O3                             | 111.47 (4)  | C23—C22—C21 | 120.2 (3) |
| P2 <sup>i</sup> —Au1—O3               | 70.24 (4)   | C23—C22—H22 | 119.9     |
| Au1 <sup>i</sup> —Au1—O3              | 94.27 (4)   | C21—C22—H22 | 119.9     |
| C21—P1—C11                            | 108.68 (13) | C22—C23—C24 | 120.1 (3) |
| C21—P1—C1                             | 105.71 (14) | С22—С23—Н23 | 119.9     |
| C11—P1—C1                             | 102.07 (14) | C24—C23—H23 | 119.9     |
| C21—P1—Au1                            | 112.32 (10) | C25—C24—C23 | 120.1 (3) |
| C11—P1—Au1                            | 113.89 (10) | C25—C24—H24 | 120.0     |
| C1—P1—Au1                             | 113.37 (10) | C23—C24—H24 | 120.0     |
| C31—P2—C41                            | 103.94 (14) | C24—C25—C26 | 120.1 (3) |
| C31—P2—C1                             | 104.97 (14) | С24—С25—Н25 | 120.0     |
| C41—P2—C1                             | 108.72 (13) | С26—С25—Н25 | 120.0     |
| C31—P2—Au1 <sup>i</sup>               | 117.03 (10) | C25—C26—C21 | 120.1 (3) |
| C41—P2—Au1 <sup>i</sup>               | 111.21 (10) | С25—С26—Н26 | 120.0     |
| C1—P2—Au1 <sup>i</sup>                | 110.44 (10) | C21—C26—H26 | 120.0     |
| N1—O2—Au1 <sup>i</sup>                | 129.75 (18) | C32—C31—C36 | 119.3 (3) |
| N1—O3—Au1                             | 104.14 (18) | C32—C31—P2  | 122.7 (2) |
| C4—O4—D4                              | 109.5       | C36—C31—P2  | 117.7 (2) |
| O2—N1—O1                              | 120.3 (3)   | C33—C32—C31 | 119.7 (3) |
| O2—N1—O3                              | 119.9 (3)   | С33—С32—Н32 | 120.2     |
| O1—N1—O3                              | 119.7 (3)   | С31—С32—Н32 | 120.2     |
| P1—C1—P2                              | 114.91 (16) | C34—C33—C32 | 120.8 (3) |
| P1—C1—H1A                             | 108.5       | С34—С33—Н33 | 119.6     |
| P2—C1—H1A                             | 108.5       | С32—С33—Н33 | 119.6     |
| P1—C1—H1B                             | 108.5       | C33—C34—C35 | 119.6 (3) |
| P2—C1—H1B                             | 108.5       | С33—С34—Н34 | 120.2     |
| H1A—C1—H1B                            | 107.5       | С35—С34—Н34 | 120.2     |
| O4—C4—D4A                             | 109.5       | C36—C35—C34 | 120.8 (3) |
| O4—C4—D4B                             | 109.5       | С36—С35—Н35 | 119.6     |
| D4A—C4—D4B                            | 109.5       | С34—С35—Н35 | 119.6     |
| O4—C4—D4C                             | 109.5       | C35—C36—C31 | 119.8 (3) |
| D4A—C4—D4C                            | 109.5       | С35—С36—Н36 | 120.1     |

| D4B—C4—D4C                   | 109.5        | С31—С36—Н36                  | 120.1      |
|------------------------------|--------------|------------------------------|------------|
| C16—C11—C12                  | 119.2 (3)    | C46—C41—C42                  | 119.7 (3)  |
| C16—C11—P1                   | 120.6 (2)    | C46—C41—P2                   | 122.1 (2)  |
| C12—C11—P1                   | 120.1 (2)    | C42—C41—P2                   | 118.2 (2)  |
| C13—C12—C11                  | 119.8 (3)    | C43—C42—C41                  | 120.1 (3)  |
| C13—C12—H12                  | 120.1        | C43—C42—H42                  | 119.9      |
| C11—C12—H12                  | 120.1        | C41—C42—H42                  | 119.9      |
| C14—C13—C12                  | 120.4 (3)    | C44—C43—C42                  | 120.2 (3)  |
| C14—C13—H13                  | 119.8        | C44—C43—H43                  | 119.9      |
| С12—С13—Н13                  | 119.8        | C42—C43—H43                  | 119.9      |
| C13—C14—C15                  | 120.1 (3)    | C43—C44—C45                  | 119.6 (3)  |
| C13—C14—H14                  | 119.9        | C43—C44—H44                  | 120.2      |
| C15—C14—H14                  | 119.9        | C45—C44—H44                  | 120.2      |
| C14—C15—C16                  | 120.4 (3)    | C46—C45—C44                  | 120.7 (3)  |
| C14—C15—H15                  | 119.8        | C46—C45—H45                  | 119.7      |
| C16—C15—H15                  | 119.8        | C44—C45—H45                  | 119.7      |
| C15—C16—C11                  | 120.1 (3)    | C45—C46—C41                  | 119.8 (3)  |
| С15—С16—Н16                  | 120.0        | C45—C46—H46                  | 120.1      |
| C11—C16—H16                  | 120.0        | C41—C46—H46                  | 120.1      |
| $P2^{i}$ —Au1—P1—C21         | 136.7 (7)    | C11—P1—C21—C22               | 110.4 (2)  |
| Au1 <sup>i</sup> —Au1—P1—C21 | -97.16 (10)  | C1—P1—C21—C22                | -140.7 (2) |
| O3—Au1—P1—C21                | -2.72 (11)   | Au1—P1—C21—C22               | -16.6 (3)  |
| $P2^{i}$ —Au1—P1—C11         | 12.6 (7)     | C26—C21—C22—C23              | 0.1 (4)    |
| Au1 <sup>i</sup> —Au1—P1—C11 | 138.74 (11)  | P1—C21—C22—C23               | 177.7 (2)  |
| O3—Au1—P1—C11                | -126.82 (12) | C21—C22—C23—C24              | -0.2 (5)   |
| P2 <sup>i</sup> —Au1—P1—C1   | -103.6 (7)   | C22—C23—C24—C25              | 0.4 (5)    |
| Au1 <sup>i</sup> —Au1—P1—C1  | 22.60 (11)   | C23—C24—C25—C26              | -0.5 (5)   |
| O3—Au1—P1—C1                 | 117.04 (11)  | C24—C25—C26—C21              | 0.4 (5)    |
| P1—Au1—O3—N1                 | -64.04 (18)  | C22-C21-C26-C25              | -0.2 (4)   |
| P2 <sup>i</sup> —Au1—O3—N1   | 117.50 (18)  | P1—C21—C26—C25               | -177.7 (2) |
| Au1 <sup>i</sup> —Au1—O3—N1  | 27.23 (18)   | C41—P2—C31—C32               | -72.2 (3)  |
| Au1 <sup>i</sup> —O2—N1—O1   | -123.0 (2)   | C1—P2—C31—C32                | 41.9 (3)   |
| Au1 <sup>i</sup> —O2—N1—O3   | 56.9 (3)     | Au1 <sup>i</sup> —P2—C31—C32 | 164.8 (2)  |
| Au1—O3—N1—O2                 | -49.4 (3)    | C41—P2—C31—C36               | 101.2 (3)  |
| Au1—O3—N1—O1                 | 130.5 (2)    | C1—P2—C31—C36                | -144.6 (2) |
| C21—P1—C1—P2                 | 74.66 (18)   | Au1 <sup>i</sup> —P2—C31—C36 | -21.8 (3)  |
| C11—P1—C1—P2                 | -171.74 (16) | C36—C31—C32—C33              | -3.0 (4)   |
| Au1—P1—C1—P2                 | -48.81 (18)  | P2-C31-C32-C33               | 170.4 (2)  |
| C31—P2—C1—P1                 | 176.49 (16)  | C31—C32—C33—C34              | 1.1 (5)    |
| C41—P2—C1—P1                 | -72.8 (2)    | C32—C33—C34—C35              | 1.0 (5)    |
| Au1 <sup>i</sup> —P2—C1—P1   | 49.50 (18)   | C33—C34—C35—C36              | -1.3 (5)   |
| C21—P1—C11—C16               | 46.3 (3)     | C34—C35—C36—C31              | -0.6 (5)   |
| C1—P1—C11—C16                | -65.1 (3)    | C32—C31—C36—C35              | 2.7 (5)    |
| Au1—P1—C11—C16               | 172.3 (2)    | P2-C31-C36-C35               | -171.0 (3) |
| C21—P1—C11—C12               | -137.5 (3)   | C31—P2—C41—C46               | 32.8 (3)   |
| C1—P1—C11—C12                | 111.1 (3)    | C1—P2—C41—C46                | -78.7 (3)  |

| A 1 D1 C11 C12                               | 11.5 (2)   |                              | 150 5 (2)  |
|----------------------------------------------|------------|------------------------------|------------|
| Au1—P1—C11—C12                               | -11.5 (3)  | Au1 <sup></sup> P2C41C46     | 159.5 (2)  |
| C16-C11-C12-C13                              | 0.3 (5)    | C31—P2—C41—C42               | -146.4 (2) |
| P1-C11-C12-C13                               | -175.9 (3) | C1—P2—C41—C42                | 102.2 (3)  |
| C11—C12—C13—C14                              | -0.2 (5)   | Au1 <sup>i</sup> —P2—C41—C42 | -19.6 (3)  |
| C12-C13-C14-C15                              | -0.2 (6)   | C46—C41—C42—C43              | 0.8 (5)    |
| C13-C14-C15-C16                              | 0.6 (6)    | P2-C41-C42-C43               | 180.0 (2)  |
| C14-C15-C16-C11                              | -0.5 (5)   | C41—C42—C43—C44              | -1.0 (5)   |
| C12-C11-C16-C15                              | 0.1 (5)    | C42—C43—C44—C45              | 0.7 (5)    |
| P1-C11-C16-C15                               | 176.3 (3)  | C43—C44—C45—C46              | -0.3 (5)   |
| C11—P1—C21—C26                               | -72.1 (3)  | C44—C45—C46—C41              | 0.1 (5)    |
| C1—P1—C21—C26                                | 36.9 (3)   | C42—C41—C46—C45              | -0.4 (5)   |
| Au1—P1—C21—C26                               | 161.0 (2)  | P2-C41-C46-C45               | -179.5 (2) |
| Symmetry codes: (i) $-x+1$ , $-y+1$ , $-z$ . |            |                              |            |

### Hydrogen-bond geometry (Å, °)

| D—H···A  | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|----------|-------------|--------------|--------------|------------|
| O4—D4…O3 | 0.84        | 2.10         | 2.908 (4)    | 161        |

